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Abstract
Explicit expressions for the wavefunctions and dispersion equation for the band
π -electrons in single-wall carbon nanotubes are obtained within the method of
zero-range potentials. They are then used to investigate the absorption spectrum
of polarized light caused by direct interband transitions in isolated nanotubes.
It is shown that, at least, under the above approximations, circular dichroism
is absent in chiral nanotubes for a light wave propagating along the tube axis.
The results obtained are compared with those calculated in a similar way for a
graphite plane.

1. Introduction

The present work is devoted to interpretation of the optical spectra of isolated carbon nanotubes
(CNTs). The problem of identification of nanotubes by their spectra is very important in view
of the large scale of their applications. As an example of investigation of the optical absorption
spectra for direct interband transitions in CNTs, we develop here a general approach to the
description of the electronic structure of nanotubes, which may be useful for the identification
of certain nanotubes by their characteristic contributions to observable optical spectra. As a
rather simple and convenient tool for obtaining the related explicit analytic expressions and
numerical calculations, we propose here the method of zero-range potentials (ZRPs) [1, 2]
that has already demonstrated its efficacy in investigations of the band structure of nonchiral
nanotubes [3]. We use it as a suitable approximation for description of the one-particle states
of CNT π -electrons. In doing so, we describe the periodic structure of the nanotubes by a
small number of identical monoatomic spirals shifted with respect to each other. Note that
the ZRP method in application to the study of nanotubes allows one, in particular, to take
into account their spatial structure in full without any restrictions on the number of interacting
neighbours. Such an approach essentially simplifies calculations of the electron structure of
chiral nanotubes, which may contain tens and hundreds of atoms in a unit cell. At the same
time, in many cases only two spirals are enough to model the spatial structure of nanotubes.
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Figure 1. Nanotubes can be obtained by cutting strips out of a monoatomic graphite layer along
different parallel dashed lines and then wrapping them to form cylinders.

The representation of a tube as an aggregate of monoatomic spirals leads to an extended zone
scheme, with the number of bands equalling the minimal number of spirals necessary for a
complete description of the nanotube structure, contrary to the standard zone scheme, in which
the number of bands equals the number of atoms in the unit cell. However, for nonchiral
nanotubes, due to their special symmetry, such an approach offers no advantages in comparison
with the standard description based on a direct account of the translation symmetry of tubes [3].

In the next section of this paper, we describe the spiral structure of chiral tubes. In
section 3, we deduce the dispersion equations for the bands of π -electrons and find explicit
expressions for the corresponding wavefunctions by using the ZRP method and the obtained
parameterization of the spiral structure of the tubes. The forbidden band widths for various
nanotubes that we obtain in this way prove to be the same, within an experimental accuracy, as
those obtained in [4] by means of scanning tunnelling spectroscopy. The results of section 3
are then used in section 4 to derive a general expression for the contribution to the light
absorption coefficient due to direct interband transitions in isolated nanotubes. In sections 4.1–
4.3, expressions for the matrix elements of the operator of electron–photon interaction for direct
interband transitions are obtained and, as a result, the selection rules for different polarizations
of the incident light are derived. In section 4.4, the general formulae are used to calculate the
absorption coefficient for nanotube (15, 14). The fact that the diameter of the latter coincides
with the average diameter of the tubes experimentally obtained and investigated in [5] allowed
us to conduct a comparison of our theoretical absorption lines and those obtained in [5]. To
explain the similarities and discrepancies between our theory and experiment, and to further
check the robustness of the developed approach, the same method is used in the section 5 to
investigate the optical absorption spectrum for an infinite graphite plane.

2. Spiral structure of carbon nanotubes

A single-wall carbon nanotube can be represented as a strip of graphite plane wrapped in the
form of a cylinder. The vector C(n, m) = na1+ma2, where a1 and a2 are the unit vectors of the
hexagonal lattice (|a1| = |a2| = √

3b, b = 0.142 nm is the bond length) and n and m are the
integers uniquely identifying a nanotube, is perpendicular to the nanotube axis and joins two
points (0, 0) and (n, m), which coincide as the strip is wrapped into a cylinder. The numbers
(n, m) determine the nanotube radius and also the chiral angle, that is, the angle between the
vectors C and a1 + a2 (armchair line), shown in figure 1, as follows:
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R =
√

3b
√

n2 + nm + m2

2π
, cos θ =

√
3

2

n + m√
n2 + nm + m2

.

As a nanotube is a long cylindrical molecule whose length is 1000 times greater than its
diameter, it is natural to consider it as a quasi-one-dimensional crystal with the unit cell in the
form of a ring of a certain width. It is possible to reproduce all the nanotube by translating
this cell along the tube axis. However, chiral nanotubes may contain tens and even hundreds
of atoms in such a cell. It is more convenient to consider such nanotubes as an aggregate of a
small number of displaced monoatomic spirals. The order of the rotational axis of the nanotube
is equal to the greatest common divisor of the nanotube indices n and m, M = GCD(n, m) [6].
The structure of such a tube can be described by rotating the pair of spirals through angles that
are multiples of α = 2π/M . That is, to describe the structure of an arbitrary nanotube, M pairs
of spirals are necessary. Thus, implying the axis z to be parallel to the tube axis, the positions
of the atoms can be described in the Cartesian system by their radius vectors

rl
st = (R cos(sϕ + tα + δl), R sin(sϕ + tα + δl), sd + bl)

s = 0,±1,±2, . . . ,±∞, t = 0, 1, . . . , M − 1, l = 0, 1.

Here, s numbers the atoms in the spiral, t numbers the pair of spirals, l distinguishes spirals
within one pair, δl and bl are respectively the rotational displacement about and the shift along
the nanotube axis for each spiral in the pair: δ0 = 0, δ1 = R−1a(cos θ1 + cos θ2)2/3, b0 = 0,
b1 = a(sin θ1 − sin θ2)2/3, where θ1 and θ2 are the angles between the vectors a1 and C
and a2 and C, respectively. The latter are determined by expressions cos θ1 = n+m/2√

n2+nm+m2
,

sin θ1 =
√

3
2

m√
n2+nm+m2 ; cos θ2 = m+n/2√

n2+nm+m2 , sin θ2 =
√

3
2

n√
n2+nm+m2 .

The transition from one atom to its next neighbour inside one spiral is attained by
rotating through the angle ϕ = R−1a(nt cos θ1 + m t cos θ2) and by shifting along the axis
by d = a(nt sin θ1 − m t sin θ2). nt and m t are the integers determined by the indices n and m:

nt = −2m + n

�R̃
+ r

�
n, m t = 2n + m

�R̃
+ r

�
m,

where R̃ = 3 if (n − m)/3M is an integer and R̃ = 1 otherwise, � = 2 n2+nm+m2

M R̃
,

r = �
M Fr

[
M

�R̃
(3 − 2 n−m

n ) + M
n ( n−m

M )ϕ(n/M)−1
]
. Here Fr[x] = x − [x] is the fractional part of

the rational number x , and ϕ(a) is the Euler function, giving the number of coprimes less than
a [6].

3. Spectrum and wavefunctions of band electrons

Recall that carbon atoms have four valence electrons. In a tube, three of them form σ -bonds and
the last one forms a delocalized π -bond. The electronic properties of nanotubes are determined
mainly by the π -electrons. We model states of the delocalized π -electrons in a tube by using
the method of zero-range potentials (ZRPs) [1, 2]. The essence of this method is that the
interaction of an electron with the atoms or ions of a lattice is described not by a potential but
by boundary conditions imposed on the one-electron wavefunction at a discrete set of points of
the atom’s location:

lim
ρl

st →0

[
∂

∂ρl
st

(ρl
st�) − λρl

st �

]
= 0, ρl

st = |r − rl
st |. (1)

Recall that boundary condition (1) is, in a sense, the three-dimensional analogue of
the δ-interaction or an equivalent expression for the Enrico Fermi pseudo-potential

−λ−1δ(ρ) ∂
∂ρ

ρ|ρ=0+ [2]. The parameter λ = −
√

2μ

h̄2 |E0| in (1) is the interaction constant,
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where μ is the universal fitting parameter with the dimension of mass (the same for all carbon
nanotubes!), and E0 is the ionization energy of an isolated carbon atom. The parameter μ is
chosen from the requirement that the distances between two nearest Van Hove singularities,
which are on different sides from the edges of a narrow forbidden band in the zigzag nanotube
(15, 0), obtained theoretically within the framework of the considered model [3] and measured
experimentally in [4] coincide.

We assume that the wavefunction satisfies, in addition to (1), the Schrödinger equation for
a free particle,

− h̄2

2μ
�� = E�.

Let us seek the wavefunction in the form

�(r, E) =
1∑

l=0

M−1∑
t=0

+∞∑
s=−∞

Cl
st G(γ, |r − rl

st |), γ =
√

−2μ

h̄2 E, (2)

where G(γ, x) = e−γ x

x .
Substituting this expression in (1), we obtain for coefficients Cl

st a homogeneous system

(−γ − λ)Cl′
s ′t ′ +

+∞∑
s=−∞

s �=s ′

Cl′
st ′ G(γ, |rl′

s ′t ′ − rl′
st ′ |) +

M−1∑
t=0
t �=t ′

+∞∑
s=−∞

Cl′
st G(γ, |rl′

s ′t ′ − rl′
st |)

+
1∑

l=0
l �=l′

M−1∑
t=0

+∞∑
s=−∞

Cl
st G(γ, |rl′

s ′t ′ − rl
st |) = 0,

s′ = 0,±1,±2, . . . ,±∞, t ′ = 0, 1, . . . , M − 1, l ′ = 0, 1. (3)

According to the symmetry of the considered system, we represent these coefficients as
Cl

st = Cl
0e−ipse−iανt , where α = 2π/M , ν = 0, 1, . . . , M − 1, p ∈ [−π, π). This yields

a system of two equations:

H (γ, p, ν)Cl′
0 +

1∑
l=0
l �=l′

Cl
0 El′l(γ, p, ν) = 0, l ′ = 0, 1, (4)

where

H (γ, p, ν) = −γ − λ +
+∞∑

s=−∞
s �=0

G
(
γ,

√
2R2 [1 − cos(sϕ)] + (sd)2

)
eips

+ (1 − δM,1)

M−1∑
t=1

+∞∑
s=−∞

G
(
γ,

√
2R2 [1 − cos(sϕ + tα)] + (sd)2

)
eipseiανt ,

El′l(γ, p, ν) =
M−1∑
t=0

+∞∑
s=−∞

G
(
γ,

√
2R2 [1 − cos(sϕ + tα + δl′ − δl)] + (sd + bl′ − bl)2

)

× eipseiανt .

The solvability condition for (4) gives for negative energies the following dispersion equations
for π -electron band states in the nanotube:

H (γ, p, ν) ± |E01(γ, p, ν)| = 0, (E01 = E10). (5)
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Thus Cl
0 = C0 Fl(γ, p, ν), where Fl(γ, p, ν) is determined from (4) (F0(γ, p, ν) = 1,

F1(γ, p, ν) = −H (γ, p, ν)/E01(γ, p, ν)) and C0(γ, p, ν) is a normalization constant
assuring the normalization of Bloch functions (2) to the δ-function. As
∫

�(r, E(p, ν))�(r, E(p′, ν ′)) dr =
1∑

l,l′=0

M−1∑
t,t ′=0

+∞∑
s,s ′=−∞

Cl
st (γ, p, ν)Cl′

s ′t ′(γ, p′, ν ′)

×
∫

G(γ, |r − rl
st |)G(γ, |r − rl′

s ′t ′ |) dr

and ∫
G(γ, |r − rl

st |)G(γ, |r − rl′
s ′t ′ |)dr = 2π

γ
exp(−γ |rl

st − rl′
s ′t ′ |),

then∫
�(r, E(p, ν))�(r, E(p′, ν ′)) dr

= |C0|2 2π

γ

1∑
l,l′=0

Fl(γ, p, ν)Fl′ (γ, p, ν)Nll′ (γ, p, ν)δ(p − p′)δν,ν′ ,

where

Nll′ (γ, p, ν)

=
M−1∑
t=0

+∞∑
s=−∞

exp
(
−γ

√
2R2 [1 − cos(sϕ + tα + δl − δl′)] + (sd + bl − bl′)2

)

× eipseiανt .

Therefore

C0(γ, p, ν) =
(

2π

γ

1∑
l,l′=0

Fl(γ, p, ν)Fl′ (γ, p, ν)Nll′ (γ, p, ν)

)−1/2

.

As an example, we consider a nanotube (15, 14) with diameter d = 1.966 nm and chiral
angle θ = 1.141◦. It is sufficient for two spirals (M = 1) to describe its spatial structure;
accordingly, two bands are obtained. At the same time, such a nanotube contains 2524 atoms
per unit cell and hence the same number of bands in the standard zone scheme, some of the
bands clamping. Evidently, analysing two bands by using the extended zone scheme (figure 2)
is much easier than analysing 2524 bands. In figure 2, the band gap (Eg = 0.42 eV) and
the extremum points that generate the Van Hove singularities in the electronic density of states
inherent to quasi-one-dimensional systems are explicitly visible.

By means of scanning tunnelling spectroscopy it is possible to obtain the electronic density
of states near the Fermi level of a nanotube and thus to find the band gap for semiconducting
nanotubes or the distance between two nearest Van Hove singularities on different sides of a
narrow forbidden band for ‘metal’ nanotubes, and also the nanotubes’ diameters and chiral
angles [4]. We have compared the experimental data with data obtained by the ZRP method
(table 1). It turns out within the accuracy of experiment that several values of the nanotube
indices correspond to each pair of the diameter–angle measured in [4]. Moreover, some of
the appropriate indices for semiconducting tubes (Eg ∈ 0.5–0.6 eV) are sometimes metallic
ones and vice versa; among the corresponding indices for metal tubes there are those for
semiconducting tubes. One can see from table 1 that the results of calculations carried out are
in satisfactory agreement with the energy gaps data obtained in [4] by the method of scanning
tunnelling spectroscopy within the accuracy of the latter (0.05–0.1 eV).
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Figure 2. The zone scheme of nanotube (15, 14) in natural spiral coordinates, that is, the extended
zone scheme.

4. Optical absorption caused by direct interband transitions in isolated nanotubes

The energy absorbed by a nanotube per unit of time in the field of a plane electromagnetic
wave

A(r, t) = eA0 exp [i(kr − ωt)] ,

where e is a unit polarization vector, due to direct interband transitions from a state 1 in the
valence band to a state 2 in the conduction band is, according to the Fermi golden rule,

E(e) = 4πω2

h̄c2
|A0|2

∑
ν1,ν2

∑
p1,p2

|(e · g(p1, ν1, p2, ν2))|2δ(E2(p2, ν2) − E1(p1, ν1) − h̄ω), (6)

where g(p1, ν1, p2, ν2) = ( h̄
2ω

)
1
2

ieh̄
me

〈�1|∇|�2〉 is the matrix element of electron–photon
interaction [7]. Let us consider temperatures kBT � Eg provided that all states below the
Fermi level are occupied and all states above it are empty. The ratio of energy (6) to the energy
flux of the electromagnetic wave 1

2π
ω2

c n|A0|2, n being the refraction coefficient of a medium
surrounding the tube,

α(e) = 8π2

ch̄n

∑
ν1,ν2

∑
p1,p2

|(e · g(p1, ν1, p2, ν2))|2δ(E2(p2, ν2) − E1(p1, ν1) − h̄ω), (7)

characterizes the absorbing properties of the tube depending on the frequency and polarization
of the incident radiation. From now on, we shall call this quantity the absorption coefficient of
the tube.

4.1. Parallel polarization

Hereafter we assume that the tube axis is parallel to the z-axis. Let the incident light be
polarized parallel to the nanotube axis (parallel polarization or copolarization). Using the
wavefunctions (2) and the dispersion equation (5), we obtain the following expression for the
z-component of the matrix element of the electron–photon interaction:

6
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Table 1. Comparison of experimental results [4] with results obtained by the ZRP method.

Experiment ZRP

Diameter Angle
±0, 1 ±1 Eg Diameter Angle Eg

No (nm) (deg) (eV) Type (n, m) (nm) (deg) (eV)

1 1.4 25 0.55 Semiconductor (17, 2) 1.416 24.504 Metal
(18, 2) 1.494 24.791 0.551
(16, 2) 1.338 24.182 0.62

2 1.4 4 0.6 Semiconductor (11, 9) 1.358 3.304 0.608

16 1.4 4 0.5 Semiconductor (12, 9) 1.429 4.715 Metal
(12, 10) 1.494 3.004 0.553

3 2 7 0.5 Semiconductor (18, 12) 2.048 6.587 Metal
(18, 11) 1.985 7.934 0.416
(17, 11) 1.913 7.053 0.418

4 1.2 24 0.65 Semiconductor (14, 2) 1.182 23.413 Metal
(15, 2) 1.26 23.822 0.652

5 1.7 9 1.7 Metal (16, 9) 1.717 9.183 Semiconductor
(15, 9) 1.644 8.213 1.453

6 1.3 14 1.8 Metal (13, 5) 1.26 14.392 Semiconductor
(14, 5) 1.336 15.295 1.74
(14, 6) 1.392 13.004 Semiconductor

7 1.1 30 1.9 Metal (15, 0) 1.174 30 1.9
(14, 0) 1.096 30 Semiconductor
(13, 0) 1.018 30 Semiconductor

13 1.5 7 2 Metal (13, 8) 1.437 7.827 Semiconductor
(14, 9) 1.572 7.154 Semiconductor

14 1.4 16 1.9 Metal (15, 5) 1.411 16.102 Semiconductor
(14, 5) 1.336 15.295 1.74
(16, 5) 1.487 16.826 Semiconductor

17 1.4 9 0.55 Semiconductor (13, 7) 1.376 9.826 Metal
(12, 7) 1.303 8.639 0.635

18 1.2 16 0.6 Semiconductor (13, 4) 1.205 16.996 Metal
(12, 4) 1.129 16.102 0.734

19 1.3 6 0.6 Semiconductor (11, 8) 1.294 5.209 Metal
(12, 8) 1.365 6.587 0.604

20 1.3 29 0.5 Semiconductor (16, 0) 1.253 30 0.63
(17, 0) 1.331 30 0.643

21 1.9 16 0.4 Semiconductor (20, 7) 1.9 15.535 0.434
(21, 7) 1.976 16.102 0.419

gz =
(

h̄

2ω

) 1
2 ieh̄

me

∫
�1

∂

∂z
�2 dr =

(
h̄

2ω

) 1
2 ieh̄

me
C0(γ1, p1, ν1)C0(γ2, p2, ν2)

−4π

γ 2
2 − γ 2

1

×
1∑

l=0

[
Fl(γ1, p1, ν1)Fl(γ2, p2, ν2)Q00

+
1∑

l′=0
l′ �=l

Fl(γ1, p1, ν1)Fl′ (γ2, p2, ν2)Qll′

]
δν1,ν2 δp1,p2 , (8)

7
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where

Q00(γ1, p1, ν1, γ2, p2, ν2)

=
+∞∑

s=−∞
s �=0

sd

[
G̃

(
γ1,

√
2R2 [1 − cos(sϕ)] + (sd)2

)

− G̃
(
γ2,

√
2R2 [1 − cos(sϕ)] + (sd)2

)]
eip2s

+ (1 − δM,1)

M−1∑
t=1

+∞∑
s=−∞

sd

[
G̃

(
γ1,

√
2R2 [1 − cos(sϕ + tα)] + (sd)2

)

− G̃
(
γ2,

√
2R2 [1 − cos(sϕ + tα)] + (sd)2

)]
eip2seiαν2 t ,

Qll′ (γ1, p1, ν1, γ2, p2, ν2) =
M−1∑
t=0

+∞∑
s=−∞

(sd + bl − bl′ )

×
[

G̃

(
γ1,

√
2R2[1 − cos(sϕ + tα + δl − δl′ )] + (sd + bl − bl′)2

)

− G̃
(
γ2,

√
2R2 [1 − cos(sϕ + tα + δl − δl′)] + (sd + bl − bl′)2

)]
eip2seiαν2t

and the function G̃(γ, x) = e−γ x

x2 (γ + 1
x ) is introduced.

The Kronecker deltas δν1,ν2δp1,p2 in (8) determine the selection rules ν1 = ν2, p1 = p2.
Representing the matrix element as gz(p1, ν1, p2, ν2) = g̃z(p1, ν1)δν1,ν2δp1,p2 and replacing the
sum in p in (7) by an integral, we obtain, with account of the spin degeneracy, that the tube
absorption coefficient for the parallel polarization is

α‖ = 8π

ch̄n

L

T

M−1∑
ν=0

∫
|g̃z(p, ν)|2δ(E2(p, ν) − E1(p, ν) − h̄ω) dp,

where L is the nanotube length, and T = b
√

9�

2M R̃
is the length of the elementary cell of the

nanotube. And, finally,

α‖(ω) = 8π

ch̄n

L

T

M−1∑
ν=0

|g̃z(p, ν)|2
| ∂
∂p (E2(p, ν) − E1(p, ν))|

∣∣∣∣∣
p=p(ω,ν)

,

where p(ω, ν) is found from the condition E2(p, ν) − E1(p, ν) = h̄ω.

4.2. Circular right polarization

Now let the light be propagating along the nanotube axis and have circular right polarization.
Then the corresponding matrix element is

gR =
(

h̄

2ω

) 1
2 ieh̄

me

∫
�̄1

(
∂

∂x
+ i

∂

∂y

)
�2 dr

=
(

h̄

2ω

) 1
2 ieh̄

me
C0(γ1, p1, ν1)C0(γ2, p2, ν2)

−4π R

γ 2
2 − γ 2

1

8
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×
1∑

l=0

[
Fl(γ1, p1, ν1)Fl(γ2, p2, ν2)Qll

+
1∑

l′=0
l′ �=l

Fl(γ1, p1, ν1)Fl′ (γ2, p2, ν2)Qll′

]
δν1+1,ν2 δp1+ϕ,p2 ,

where

Qll (γ1, p1, ν1, γ2, p2, ν2)

=
+∞∑

s=−∞
s �=0

(1 − e−isϕ)eiδl

[
G̃(γ1,

√
2R2 [1 − cos(sϕ)] + (sd)2)

− G̃
(
γ2,

√
2R2 [1 − cos(sϕ)] + (sd)2

)]
eip2s

+ (1 − δM,1)

M−1∑
t=1

+∞∑
s=−∞

(1 − e−i(sϕ+αt))eiδl

×
[

G̃
(
γ1,

√
2R2[1 − cos(sϕ + tα)] + (sd)2

)

− G̃
(
γ2,

√
2R2 [1 − cos(sϕ + tα)] + (sd)2

)]
eip2seiαν2 t ,

Qll′ (γ1, p1, ν1, γ2, p2, ν2) =
M−1∑
t=0

+∞∑
s=−∞

(1 − e−i(sϕ+tα+δl −δl′ ))eiδl

×
[

G̃
(
γ1,

√
2R2 [1 − cos(sϕ + tα + δl − δl′)] + (sd + bl − bl′)2

)

− G̃
(
γ2,

√
2R2 [1 − cos(sϕ + tα + δl − δl′)] + (sd + bl − bl′)2

)]
eip2seiαν2t .

In this case, the selection rules are ν2 = ν1 + 1, p2 = p1 + ϕ.
Substituting

gR(p1, ν1, p2, ν2) = g̃R(p1, ν1, p1 + ϕ, ν1 + 1)δ̃ν1+1,ν2δp1+ϕ,p2 ,

δ̃ν1+1,ν2 =
{

1, ν2 = ν1 + 1 (mod M)

0, ν2 �= ν1 + 1 (mod M)

into (7) we get the following expression for the absorption coefficient αR of the circular right
polarized light propagating along the tube axis:

αR(ω) = 8π

ch̄n

L

T

M−1∑
ν=0

|g̃R(p, ν, p + ϕ, ν + 1)|2
| ∂
∂p (E2(p + ϕ, ν + 1) − E1(p, ν))|

∣∣∣∣∣
p=p(ω,ν)

,

where p(ω, ν) is found from the condition E2(p + ϕ, ν + 1) − E1(p, ν) = h̄ω.

4.3. Circular left polarization

If the light is propagating along the nanotube axis and has circular left polarization, then the
corresponding matrix element is

9
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gL =
(

h̄

2ω

) 1
2 ieh̄

me

∫
�̄1

(
∂

∂x
− i

∂

∂y

)
�2 dr

=
(

h̄

2ω

) 1
2 ieh̄

me
C0(γ1, p1, ν1)C0(γ2, p2, ν2)

−4π R

γ 2
2 − γ 2

1

×
M−1∑
l=0

[
Fl(γ1, p1, ν1)Fl(γ2, p2, ν2)Qll

+
M−1∑
l′=0
l′ �=l

Fl(γ1, p1, ν1)Fl′ (γ2, p2, ν2)Qll′

]
δν1−1,ν2 δp1−ϕ,p2,

Qll (γ1, p1, ν1, γ2, p2, ν2) =
+∞∑

s=−∞
s �=0

(1 − eisϕ)e−iδl

×
[

G̃
(
γ1,

√
2R2 [1 − cos(sϕ)] + (sd)2

)

− G̃
(
γ2,

√
2R2 [1 − cos(sϕ)] + (sd)2

)]
eip2s

+ (1 − δM,1)

M−1∑
t=1

+∞∑
s=−∞

(1 − ei(sϕ+tα))e−iδl

×
[

G̃
(
γ1,

√
2R2 [1 − cos(sϕ + tα)] + (sd)2

)

− G̃
(
γ2,

√
2R2 [1 − cos(sϕ + tα)] + (sd)2

)]
eip2seiαν2 t ,

Qll′ (γ1, p1, ν1, γ2, p2, ν2) =
+∞∑

s=−∞
(1 − ei(sϕ+tα+δl −δl′ ))e−iδl

×
[

G̃
(
γ1,

√
2R2 [1 − cos(sϕ + tα + δl − δl′)] + (sd + bl − bl′)2

)

− G̃
(
γ2,

√
2R2 [1 − cos(sϕ + tα + δl − δl′)] + (sd + bl − bl′)2

)]
eip2seiαν2t .

In comparison with the case of the right polarization, the selection rules change to
ν2 = ν1 − 1, p2 = p1 − ϕ. As above, we obtain

αL(ω) = 8π

ch̄n

L

T

M−1∑
ν=0

|g̃L(p, ν, p − ϕ, ν − 1)|2
| ∂
∂p (E2(p − ϕ, ν − 1) − E1(p, ν))|

∣∣∣∣∣
p=p(ω,ν)

,

where p(ω, ν) is found from the condition E2(p − ϕ, ν − 1) − E1(p, ν) = h̄ω.

4.4. An example

As an example, we consider a tube (15, 14). The zone scheme (lines 1 and 2), the squared
module of the matrix element of electron–photon interaction (line 3), and absorption coefficient
(dotted line 4) as functions of p are depicted in figure 3 for various polarizations of the incident
light. The same data for the parallel polarization are shown in figure 3(a). The lines in
figure 3(b) are related to the case of right-polarized light propagating along the tube axis. Here,

10
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Figure 3. The band and absorption spectra for a nanotube (15, 14): (a) parallel polarization, (b) right
circular polarization.

the upper band 2 is shifted with respect to the lower band 1 by +ϕ, in accordance with the
selection rules.

The lines for left circular polarization are mirror reflections of those for right
polarization with respect to zero. Indeed, let us replace p with −p everywhere in the
expression for the absorption coefficient for right polarization. Then the matrix element
of electron–photon interaction g̃R(p, p + ϕ) becomes g̃L(p, p − ϕ), the joint density of
states | ∂

∂p (E2(p + ϕ) − E1(p))|−1 becomes | ∂
∂p (E2(p − ϕ) − E1(p))|−1, and the condition

E2(p+ϕ)− E1(p) = h̄ω becomes E2(p−ϕ)− E1(p) = h̄ω. Note that here the ν-dependence
drops out since M = 1 for the tube (14, 15). In general, by replacing p with −p and ν with −ν,
the matrix element of electron–photon interaction g̃R(p, p+ϕ, ν+1), the joint density of states
| ∂
∂p (E2(p + ϕ, ν + 1) − E1(p, ν))|−1 and the condition E2(p + ϕ, ν + 1) − E1(p, ν) = h̄ω

become g̃L(p, p − ϕ, ν − 1), | ∂
∂p (E2(p − ϕ, ν − 1) − E1(p, ν))|−1 and E2(p − ϕ, ν − 1) −

E1(p, ν) = h̄ω, respectively. One can see that the absorption coefficients for right- and left-
polarized light are equal; hence, circular dichroism is absent within the framework of the
considered approximation. Note that this conclusion is not obvious for chiral tubes. In [8],
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calculations of the optical properties of nanotube (4, 2) revealed no circular dichroism either.
However, a very slight circular dichroism was found in theoretical work [9]. Samsonidze et al
[10] suppose that circular dichroism occurs only when the time-reversal symmetry is broken
because of the spatial inhomogeneity of the optical field and an axial magnetic field.

Let us consider the light to be linearly polarized, for certainty, parallel to the x-axis. Then

|gx(p1, ν1, p2, ν2)|2 = 1
4 |gR(p1, ν1, p2, ν2) + gL(p1, ν1, p2, ν2)|2

= 1
4 (|gR(p1, ν1, p2, ν2)|2 + |gL(p1, ν1, p2, ν2)|2
+ gR(p1, ν1, p2, ν2)gL(p1, ν1, p2, ν2)

+ gR(p1, ν1, p2, ν2)gL(p1, ν1, p2, ν2)).

Taking into account that (gR(p1, ν1, p2, ν2) = g̃R(p1, ν1, p1 + ϕ, ν1 + 1)δ̃ν1+1,ν2δp1+ϕ,p2) and
(gL(p1, ν1, p2, ν2) = g̃L(p1, ν1, p1 − ϕ, ν1 − 1)δ̃ν1−1,ν2δp1−ϕ,p2), the third and fourth terms
vanish. Evidently, |gx(p1, ν1, p2, ν2)|2 = |gy(p1, ν1, p2, ν2)|2. Then the absorption coefficient
of linear cross-polarized light is

α⊥(ω) = 1
4 (αR(ω) + αL(ω)) = 1

2αR(ω).

Notice that the selection rules for the light linearly polarized parallel and perpendicular to the
nanotube axis are different. The differences manifest themselves in the light absorption (linear
dichroism) (figure 4). A distinctive feature of the absorption of cross-polarized light is that
the transition at the frequency corresponding to the band gap is forbidden. Therefore, the
absorption edge in this case is shifted to higher frequencies, which is clearly seen in figure 4.

5. Discussion and comparison with absorption by a graphite plane

The absorption spectrum of polarized light revealed by a system of single-wall nanotubes,
vertically aligned on a quartz substrate, was experimentally investigated in [5] within the
frequency range 0.5–6 eV. The average diameter of the nanotubes was ∼2.0 nm, with a
standard deviation of ∼0.4 nm. Evidently, for nanotubes with various diameters and chiral
angles there is a noticeable scatter in the peak positions on the absorption lines, which actually
causes the observable line to smooth out. Moreover, the nanotubes investigated in [5] were
not ideally rectilinear. Because of these, sharp peaks are difficult to see on the absorption lines
obtained in [5]. However, such peaks were observed in other experiments [11–14], in which the
absorption lines were measured for energy up to 3 eV. As already mentioned, a wider frequency
range was considered in [5], and distinct absorption maxima were found to occur at 5.25 eV
for cross-polarized light and at 4.5 eV for copolarized light. The nature of these maxima is not
quite clear. Some authors explain them by excitation of π -plasmons [15, 16]. If we smooth out
our absorption lines (figure 4), the absolute absorption maximum appears at a frequency close
to 5.25 eV, and, in accord with [5], the absorption intensity of the copolarized light proves to
be greater than that of the cross-polarized one. However, the observed maximum at 4.5 eV on
our smoothed curve does not appear.

To understand the structure of the absorption lines, we have studied, by using the ZRP
method, the optical absorption spectrum for an infinite graphite plane. On the basis of the ZRP
method, it is possible to find the dispersion equation and thus to determine the band structure of
the π -electrons of an infinite graphite plane (figure 5). A similar band structure was obtained
by the tight-binding method [17–22].

As the unit cell of the hexagonal lattice of a two-dimensional (2D) graphite plane contains
two atoms, the band structure contains two bands. The Brillouin zone is a hexagon. The point �
corresponds to its centre. The energy has a maximum (minimum) at this point. M is the saddle
point corresponding to the midpoints of hexagonal edges. The points K, where the bands touch,
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Figure 4. Dependence of the absorption coefficient of the isolated nanotube (15, 14) on the energy
of the incident light: (a) copolarized, (b) cross-polarized.

are at the vertices of the hexagon, that is, 2D graphite is a semimetal. Following [17, 19, 20, 22],
the band structure of an (n, m) nanotube can be obtained by imposing periodic boundary
conditions on the orthogonal component of the wavevector with respect to the nanotube axis;
i.e. the wavevector should satisfy the condition

Ck = 2π f,

where f is an integer. Hence the allowed values of the wavevector lie on n + m lines inside
the Brillouin zone of the graphite (figure 6). Note that due to the large number of atoms in the
nanotube unit cell, the first Brillouin zone of the tube is a small segment containing the point �.

Extending a line of allowed values for k from � to the centre of another Brillouin zone of
graphite, we get an extended zone scheme. On its path through other Brillouin zones to point
� of another Brillouin zone, this line regenerates the allowed segments of the first zone with
different f . If on this path all the allowed segments of the first zone are regenerated, such a
nanotube is described by two spirals (figure 6) and their extended zone scheme contains only
two bands (as, for example, for a nanotube (15, 14), figure 2).
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Figure 5. The band structure of an infinite graphite plane.
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Figure 6. Allowed values of the wavevector for a nanotube (15, 14).

However, the two-spiral structure is not inherent to all nanotubes. For example, for a
nanotube (4, 2) two lines with f = 0 and 1 are necessary to get, as above, all the allowed
segments of the Brillouin zone; as a result, the band structure contains four bands (figure 7) and
the spatial structure of this tube is described by four spirals.
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Figure 7. Allowed values of the wavevector for a nanotube (4, 2).

Let us return to a nanotube (15, 14) and figure 6. Two bands correspond to one line of
allowed values of the wavevector k. The maxima of the energy of the bottom band are located
at the intersections of the line of the allowed values of k with the edges of the hexagons, and
the minima are in between them inside each crossed hexagon. Therefore, the nanotube bottom
band is a sequence of alternating maxima and minima (figure 2). The closer that line passes to
the centre of a hexagon (point �), the deeper the corresponding minimum is. The top band is
just a mirror copy of the bottom one, the minima of the former being located exactly opposite
to the maxima of the latter and vice versa. The greatest distance between the maxima of the
bottom band and the minima of the top band is at the intersection of the line of the wavevector-
allowed values with the midpoints of the edges (point M) and corresponds to 5.32 eV. If the
line passes near this point, so that a slight shift occurs, then, accordingly, this distance appears
to be somewhat less. When moving from the midpoint of a hexagon edge to a hexagon vertex,
this distance decreases, and the bands touch at K. However, in a real nanotube, because of its
curvature, the bands are a little distorted and a narrow gap of ∼0.01 eV (depending on the
nanotube diameter) appears. This is well seen from the zone scheme of a nanotube (15, 14)
(figure 2), where the envelopes of the bottom band maxima and the top band minima coincide
with the energy lines in the zone scheme of graphite while the wavevector runs over the segment
KM on the hexagon edge (figure 5). As the extremum points of both bands of the nanotube
occur at identical values of the wavevector, the electronic joint density of states becomes infinite
at these points. This results in the Van Hove singularities (peaks) on the absorption lines, the
peaks corresponding to transitions between the extremum points. Some of these transitions are
forbidden because of zero value of the matrix element of electron–photon interaction at these
points.

Notice that the above reasoning is used here only for interpretation of the results obtained
on the basis of direct calculations with the use of the ZRP method and, therefore, with a
complete account of the spatial structure of nanotubes.

In the case of parallel polarization, the peaks are wider and more distinct than those in the
case of cross polarization. As the frequency of incident light increases, the density of peaks
increases, reaches a maximum around 5.3 eV, and then drastically falls. The result is that the
maximum of the light absorption is somewhere in this region. This happens because, due to a
decrease in the slope of the curve KM, the density of extremum points of both bands increases
as the centre of an edge (point M) is approached.

The frequency dependence of light absorption caused by direct interband transitions of
π -electrons for the graphite plane is shown in figure 8. The absorption maximum is close to
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Figure 8. Absorption spectrum of an infinite graphite plane for direct interband transitions of π -
electrons, obtained on the basis of the ZRP method.

the energy that equals the distance between the bands at point M. There is some discrepancy
between the light absorption spectra of graphite calculated by the ZRP method and obtained
experimentally in [23–25]. Namely, the ZRP line has a peak at 5.32 eV, while the analogous
experimental line has this peak shifted to 4.6 eV. The value of 4.6 eV is attributed to the distance
between the π -bands at the saddle point M [24]. The same distance obtained here by the ZRP
method is 5.32 eV. The cause of this discrepancy may be related to the choice of the universal
fitting parameter μ. It was chosen from the requirement that the distance between the two
nearest Van Hove singularities on both sides from the edges of the narrow forbidden band
in a nanotube zigzag (15, 0), which was calculated by the ZRP method, and that obtained
experimentally in [4], be equal. The use of this fitting allowed us to achieve rather good results
near the forbidden bands for different nanotubes, that is, near the K points of the graphite bands.
However, away from this region, certain discrepancies in energies of the bottom and top bands
may occur. These discrepancies may add together to total as high as 0.72 eV at the saddle point
M. Actually, it is difficult to expect a good quantitative agreement within the whole energy
range for a model with one fitting parameter. A similar situation is observed for the tight-
binding model with a single parameter (overlap energy) γ0 [26], where the distance between
the bands at the saddle point is 2γ0, γ0 ∈ (2.5–2.9) eV. To improve the tight-binding model, the
three-nearest-neighbour approximation with additional parameters was considered [26]. Note
that the ZRP method with one parameter, in general, takes into account the influence of all
neighbours. In particular, it results in the appearance of a suitably narrow forbidden band for
some ‘metal’ nanotubes [3], while within the tight-binding approximation such a band appears
for the additional accounting of σ–π hybridization.

By varying the fitting parameter in the ZRP method and requiring that the interband
distance at the saddle point M for the graphite plane and that experimentally obtained be
equal, we can achieve a good coincidence of our calculated absorption line and that obtained
experimentally in the vicinity of 4.6 eV. Similar results are also obtained there for the case
of the absorption of copolarized light by nanotubes. But then the discrepancy with scanning
tunnelling spectroscopy data near the K point appears. The coincidence of the location of the
absolute maximum of absorption for the graphite plane and that for nanotubes seems clear
for the case of copolarized light. Generally, the corresponding absorption lines for the tubes,
especially for tubes of sufficient diameters, should not differ much from those for the graphite
plane, except for the presence of singularities due to the one-dimensional nature of nanotubes.
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Therefore, the maximum of the absorption at 4.6 eV [5] is simply a property of graphite.
The absorption of cross-polarized light by carbon tubes is not related directly to the optical
properties of graphite, since the graphite plane does not absorb cross-polarized light.

Note that a maximum at 5.25 eV for the absorption of cross-polarized light is also
observed; each peak of the corresponding calculated line is slightly blue-shifted as compared to
the case of the copolarized light absorption, though not so much as to provide a shift of 0.65 eV
from the characteristic graphite maximum at 4.6 eV. Therefore, the nature of this maximum is
not clear yet.

Also, notice that the ZRP results on the co- and cross-polarized absorption spectra for the
nanotubes (6, 5), (7, 5), (8, 4), (7, 6) are in a quite satisfactory agreement with the data obtained
in [27] by polarized photoluminescence excitation spectroscopy.

It is necessary to mention that in this work only a subsystem of tube π -electrons was taken
into account. It was shown in [23] that the σ -electrons do not contribute to light absorption in
graphite in the energy region below ∼9 eV. However, it was stated in [24] that the σ -electrons
of graphite may affect the absorption spectrum already near ∼6 eV. As it was emphasized
in [28], in small nanotubes such as (5, 0), (2, 4) and (3, 3), thoroughly studied there, a large
curvature effect may also lead to the hybridization of the π and σ orbitals. With account of
the hybridization effect the tube (5, 0), according to calculations [28] and [29], appears to be
metallic. Our calculations of the optical absorption spectra for tubes (5, 0), (4, 2) with account
of only the π electrons reveal sharp peaks at 2.18 eV, 2 eV and 3.6 eV, 3.52 eV respectively,
which are not in bad agreement with experimental values 2.1 and 3.1 eV obtained in [28] for
arrays of these nanotubes aligned in channels of an AlPO4-5 single crystal. However, we did
not find the sharp peak at 1.37 eV obtained experimentally and any peaks at all in the absorption
spectra of a tube (3, 3) in the photon energy range 0.5–4 eV. We cannot exclude that some peaks
at the low edge of the absorption line may appear because of exciton generation.

In principle, the ZRP method also allows one to incorporate the σ -electrons and, by
increasing the number of fitting parameters, to improve the quantitative coincidence with
experimental data.

6. Conclusion

The version of the method of zero-range potentials with one universal fitting parameter
proposed in the present work proves to be an effective tool for qualitative and, at least, near the
forbidden bands, quantitative description of the electronic properties of all single-wall carbon
nanotubes and the graphite plane. Being, in fact, an analogue of the Kronig–Penny model for
nanotubes, it permits one to grasp in rather simple way all the effects and contributions mostly
originating from the geometrical structure of nanotubes. In combination with the model of a
tube as a system of parallel monoatomic spirals, the zero-range potential method works well
when the explicit dispersion equations and wavefunctions of the band π -electrons for a single-
wall nanotube and the contributions to the absorption spectra of polarized light caused by direct
interband transitions of the π -electrons in isolated single-wall nanotubes are to be obtained.

In the framework of this approximation, circular dichroism for light propagating along
the ideal chiral nanotube does not appear. In the case of copolarized and cross-polarized light
falling perpendicular to the tube axis, linear dichroism should be observed, due to an essential
distinction in the selection rules. For cross-polarized light, it may manifest itself as a blue-
shift of the absorption edge; for copolarized light, the peaks of the absorption line are wider
and more intensive. These conclusions agree qualitatively with experimental results [5]. The
smoothed absorption lines for parallel polarization qualitatively coincide with the absorption
lines for the graphite plane, but the characteristic maximum is shifted from 4.6 eV [24–26]
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to 5.3 eV. This distinction can be caused by both limitations of the one-parameter model and
ignoring the effects of σ–π hybridization for higher energies.

Acknowledgments

The authors are grateful to M Sushko for valuable discussions and remarks.

References

[1] Demkov Yu N and Ostrovskii V N 1988 Zero-Range Potentials and Their Applications in Atomic Physics (New
York: Plenum) (1975 Izd-vo Leningradskogo Universiteta)

[2] Albeverio S, Gesztesy R, Hoegh-Krohn R and Holden H 1988 Models in Quantum Mechanics Texts and
Monographs in Physics (New York: Springer)

[3] Tishchenko S V 2006 Low Temp. Phys. 32 953
[4] Wildoer J W G, Venema L C, Rinzler A G, Smalley R E and Dekker C 1998 Nature 391 59
[5] Murakami Y, Einarsson E, Edamura T and Maruyama S 2005 Phys. Rev. Lett. 94 087402
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